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In  this paper we consider the two-dimensional boundary-value problem that arises 
when the Helmholtz equation is solved in a parallel-plate waveguide on the 
centreline of which is placed an obstacle that is symmetric about the centreline but 
which has otherwise arbitrary shape. The normal derivative of the unknown 
potential $ is specified on the surface of the obstacle. Two problems are considered 
in detail. First the problem of determining any trapped-mode wavenumbers is 
considered and secondly the problem of the scattering of an incident wave by the 
obstacle is examined. The solutions to these problems are sought using integral 
equations. Both problems have relevance in acoustics and in water-wave theory. 

1. Introduction 
The use of integral equations to solve exterior problems in linear acoustics, i.e. to 

solve the Helmholtz equation (Va + ka) $ = 0 outside a surface S given that $ satisfies 
certain boundary conditions on 8, is very common. A good description is provided 
by Martin (1980). Integral equations have also been used to solve the two- 
dimensional Helmholtz equation that arises in water-wave problems where there is 
a constant depth variation. For example Hwang & Tuck (1970) and Lee (1971) 
examined the problem of wave oscillations in arbitrarily shaped harbours using such 
techniques. In this paper we will use these techniques to provide a powerful method 
for solving a certain class of problems concerning obstacles in waveguides. 

In a recent paper Linton & Evans (1992) have shown how radiation and scattering 
problems for vertical circular cylinders placed on the centreline of a channel of finite 
water depth can be solved efficiently using the multipole method devised originally 
by Ursell (1950). This method was also used by Callan, Linton & Evans (1991) to 
prove the existence of trapped modes in the vicinity of such a cylinder at a discrete 
wavenumber k < x /2d ,  where 2d is the channel width. The methods employed in 
these papers are very powerful but are restricted to circular geometries. The integral 
representations that were derived in them can however be used to construct Green’s 
functions suitable for more general geometries. 

Many water-wave/body interaction problems in which the body is a vertical 
cylinder with constant cross-section can be simplified by factoring out the depth 
dependence. Thus if the boundary conditions are homogeneous we can write the 
velocity potential @(q y, z, t )  = Re {$(x, y) cosh k(z+ h) e-iut} where the (2, y)-plane 
corresponds to the undisturbed free surface and z is measured vertically upwards, 
with z = - h the bottom of the channel. Here k is the unique real positive solution of 
the dispersion relation wa = gk tanh kh. In such cases the two-dimensional potential 
$(x,y) satisfies the Helmholtz equation (Va+ k 2 ) $  = 0 and so the problem is 
equivalent to one in acoustics in which w = kv, where v is the speed of sound. Two 
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problems that fall into this category are that of determining the trapped-mode 
wavenumbers, if any exist, for a vertical cylinder in a channel, and that of the 
scattering of an incident plane wave by such a body. 

The existence of trapped modes in water waves has been know for nearly 150 years, 
the first example being given by Stokes (1846). In this context trapped modes are 
modes of oscillation at a particular frequency which have finite energy and which 
persist in some localized region including the free surface, whilst decaying rapidly to 
zero as the free surface extends to infinity. Ursell(l951) proved the existence of such 
a trapped mode in the vicinity of a horizontal circular cylinder provided the radius 
was sufficiently small, whilst Jones (1953) provided general conditions for the 
occurrence of trapped modes in both water waves and acoustics. Recently many 
examples of trapped modes in channels have been discovered. For example the 
existence of trapped modes in the vicinity of a vertical cylinder of constant cross- 
section situated on the centreline of a channel was not realized until Evans & Linton 
(1991) computed numerically the trapped-mode wavenumbers for the case when the 
cylinder has rectangular cross-section. Subsequently Callan et al. (1991) proved the 
existence of, and computed the wavenumbers for, the circular croes-section case. It 
should be noted however that experimental evidence for acoustic resonances in the 
case of the circular cylinder was presented a t  Euromech Colloquium 119, a report of 
which is given by Bearman & Graham (1980), pp. 231-232). Trapped modes are 
usually associated with a cutoff frequency and in the case of a channel a simple 
separation-of-variables solution shows that for k < n/2d no waves antisymmetric 
about the centreline can propagate down the channel. In  seeking trapped modes we 
shall therefore assume a motion antisymmetric about the centreline of the channel 
and restrict our attention to wavenumbers k < n/2d. The case of a vertical plate 
placed on the centreline requires further comment. 

A method for computing the values of the trapped-mode wavenumbers in this 
case, using mode-matching techniques, was described in Evans & Linton (1991). 
Subsequently Evans (1992) proved the existence of trapped modes for this geometry 
using complex analysis. Recently the authors have been made aware of previous 
work in this area not cited in the above papers. Thus Parker (1966) seems to have 
been the first to point out the occurrence of these acoustic resonances in the vicinity 
of a thin plate aligned in the direction of a uniform flow in a wind tunnel. These 
trapped or Parker modes are excited when the frequency of vortex shedding from the 
trailing edge of the plate coincides with a natural frequency of vibration of the 
surrounding medium and are of considerable importance to engineers since their 
excitation may cause considerable structural damage. Subsequently Koch (1983) 
provided a theory for determining the trapped-mode frequencies for the thin plate, 
based on a modification of the Wiener-Hopf technique, the values obtained being in 
agreement with those found for the rectangular block by Evans 6 Linton (1991) in 
the special case when the block reduces to a strip. A good review of these acoustic 
resonances or trapped modes is provided by Parker & Stoneman (1989). 

In 94 of the present work the acoustic resonances are determined for a wide class 
of shapes. Using Green’s functions suitable for a two-dimensional waveguide a 
homogeneous integral equation is constructed for the case where the cross-section is 
symmetric about the centreline of the guide but is otherwise arbitrary. After 
discretizing this equation the trapped-mode wavenumbers are obtained as the zeros 
of a determinant which can be calculated numerically with increasing accuracy by 
increasing the fineness of the discretization. 

The scattering of an incident plane wave by an obstacle in a channel can be treated 
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in a similar fashion. Such problems have received much attention in the past in the 
acoustics context since, owing to the symmetry in the channel walls, they correspond 
to scattering of a normally incident plane wave by a diffraction grating. One 
disadvantage of previous methods used for such problems is that it is difficult to 
calculate the behaviour in the far field accurately. The use of channel Green's 
functions, developed in $2, allows the far-field behaviour to be computed in an 
extremely simple manner, whilst the integral equation constructed in $3 enables the 
trapped modes to be computed in $4 and the scattering of an incident plane wave to 
be solved in $5 .  

2. Green's functions 
A schematic diagram showing the geometry under consideration is shown in figure 

1. We are concerned with problems for which the solution, 4, is either symmetric or 
antisymmetric about the centreline of the waveguide, y = 0. The first step is the 
construction of a symmetric and an antisymmetric Green's function, G,(P,  &) and 
G,(P, Q). Thus we require 

(2.1) 
in the fluid, except when P = &, 

G,,G,-  1/(2n)lnr as r = IP-&1+0, (2.2) 

( V t + k 2 ) G ,  = (V$+k2)Ga = 0 

' - 0  on y=O, 
aG 
-- 
a Y  
G , = O  on y = O ,  (2.5) 

and we require G, and G, to behave like outgoing waves as 1x1 -t 00. 

One way of constructing G, or G, is to replace (2.1) and (2.2) by 

( V t  + k 2 )  G, = (V: + k2)  G,  = - S(X  - f )  S(y - 7) (2.6) 
and to assume initially that k has a positive imaginary part. Then a straightforward 
application of Fourier transform methods provides an expression for G, or G, in the 
form of an integral which may in turn be replaced, using contour integration, by an 
infinite series. Expressions of this form are given, for example, in Jones (1986). 
However, for our purposes it is desirable to express G, and G, in a form that exhibits 
the logarithmic singularity explicitly in order to simplify the numerical procedure. 

We shall first consider G,. The procedure we shall use to construct G, will be to 
start with a fundamental 'free-space' wave source, Ho(kr) ,  and modify it so as to 
satisfy the other boundary conditions. Here we have written Ha for the Hankel 
function of the first kind I?;,). Now Ho(kr) - 2ix-1 In kr as kr-t  0 so that the function 

- #Ho( kr ) + H,,( kr , ) ) , where r ,  = [ (x - LJ2 + ( y + 7 - 2d ) "i, 
clearly satisfies (2.1), (2.2) and (2.3). Using results from Linton 6 Evans (1992) we 
see that this has the integral representation 

where 
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G 2 d -  7) 

J I  \ 

Y =  

FIQURE 1. Definition sketch. 

In order to satisfy (2.4) we add to this the function 

which satisfies (2.1), (2.3) and obtain 

Thus the function 
B(t) = 2 e-kyd cosh ky(d - 7). 

1 e-W 
G = -$(H,,(kr) +H,(kr,)) -- cash ky(d-y) cash ky(d-7) cos k(x-[)tdt x {, y sinh kyd 

(2.9) 
satisfies (2.1)-(2.4). By writing this function as a single integral which is even in y ,  
it follows that G is real. Thus 

1 m e-kyd 

IC ysinhkyd G = i(Y,(kr)+Y,(kr,))--Re cash ky (d - y) cash ky (d - 7) cos k(x - 5) t dt. 

(2.10) 
The integrand, considered as a function of a complex variable t, has simple poles a t  

kyd = + m i ,  n = 0,1, ..., i.e. at t = +t, where 

where 

t, = (1-(nx/kd)2)4 12 = 0,1, ..., j,, 
t, = i((nx/kd)2-l)i, n aj,+l, 

j,x -= kd < ( j ,+ l )x .  

(2.11) 
(2.12) 

(2.13) 
Using standard methods (see, for example, Thorne 1953) we can show that as 
Z-+fOo 

G - *-- 1 *' -cos En e) - cos 67) - sink@-[)t,, 
2Ld n-0 t, 

(2.14) 

where e0 = l , ~ ,  = 2 for n > 0, and so, in order for G, to behave like an outgoing wave 
as 1x1 + ao, we write 
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and we have 

It is often convenient to write G, as a contour integral, thus 

G, = -$i(H,,(kr) +Ho(krl)) 

1 e-W 
cash ky(d - y) cash ky(d -7) cos k(x- 6 )  t dt, (2.17) -ifo ysinhkyd 

where the path of integration is indented below all the poles on the real axis. 
The construction of G, is similar. We get 

1 a0 e-hd 
G ,  = a(Y,(kr) + &(krl)) +-Re cash ky(d - y) cash ky(d - 7) 

n: ycoshkyd 

x cosk(z-t)T,, (2.18) 

e*ik(Z-osn as z++m. (2.19) 

Here 7, = (l-((n-#.rc/kd)2)t, n = 1,2, ..., j,, (2.20) 

T,  = i(((n-i)x/kd)2-l)i, n > j ,+ l ,  (2.21) 

where ( j , - g ) ~  < kd < (j,+g)7~. (2.22) 

Note that if kd < in, j, = 0 and T,, n 2 1 is imaginary. In this case it can be shown 
that G, is exponentially small as 1x1 -+ 00. 

In many problems the geometry is also symmetric about x = 0. When this is the 
case the symmetry can be exploited by using appropriate combinations of the above 
Green’s functions and then only considering the region x > 0. For example the 
appropriate Green’s function for problems whose solution is symmetric about x = 0 
and antisymmetric about y = 0 is 

G = #(Y,(kr)+ Y,(kr,)+ Y,(kr,)+ &(kr3))  

2 e-kYd 
cash ky(d - y) cash ky(d -7) COB kxt cos k& dt 

ycoshkyd 

””) d . ( 7) 2i 5. 1 
-- C -sin((n-+)- sin (n-4)- coskmncosk&,, 

kd n-1 Tn 
(2.23) 

where r2 = [ ( ~ + t J ~ + ( y - 7 ) ~ ] f  and r3 = [(z+E)2+(y+7-2d)2]i. 
Two methods have been used to evaluate the real parts of the Green’s functions 

discussed above. The first is to subtract out from the integrand the singularities at  
all the principal values and then add on the resulting corrections which can be 
calculated exactly. Details of this procedure are given in Linton & Evans (1992). An 
alternative procedure has been given by McIver & Bennett (1992). For example, 
making the substitution 

s = kd(i + y ) ,  

or equivalently t = [(s/kd)2-(2is/kd)]i, 
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in (2.17), the path of integration is transformed into a curve starting at the origin, 
moving up the imaginary axis passing to the right of the singularities (which are now 
all purely imaginary) to the point s = ikd and then off to ikd + 00. This can then be 
moved back down to the real axis leaving the answer in the form of an integral of a 
complex-valued function of a real variable along the positive real axis. Thus 

eikd-s 

cosh [(s - ikd) (1 - y / d  )] cosh [(S-ikd) (1 - q / d ) ]  cos k(z-6) t ds. 
t sinh (s - ikd ) 

x Re J: 
(2.24) 

Computations suggest that this latter method is simpler to implement and provides 
a more robust numerical method for the computation of the Green’s functions but 
that the former method is rather quicker. 

3. Integral equation formulation 
We shall first consider the general Neumann problem symmetric about y = 0. Thus 

we want to find $(x, y) defined in D = (0 < y < d,  - 00 < x < co, excluding the 
body}, see figure 1, such that 

(V2+k2)$=0 in D ,  (3.1) 

a$/ay = 0 on y = 0,IxI > a, (3.2) 
a$/ay=O on y = d ,  (3.3) 

a$/&= V(z,y) on (3.4) 

and (3.5) 

Here a / &  represents normal differentiation in the direction from D towards i3.D. 
Following Ursell (1973) we will use capital letters P, Q to represent points in D and 
small letters p ,  q to represent points on aD. 

Two possible approaches leading to an integral equation formulation for this 
problem are as follows. First we can assume the existence of a solution # satisfying 
(3.1)-(3.5) and apply Green’s theorem theorem to $ and G,. Using the known 
properties of G, and the assumed properties of # we obtain 

which is an integral representation for $ at any point in D in terms of the values of 
$ and a$/& on the body boundary, aD. Letting P approach i3D results in an integral 
equation for the value of $ on the body boundary: 

Secondly we can represent $(P) by a distribution of sources over aD. Thus we write 
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On applying the body boundary condition (3.4) we see that the unknown source 
strength ,u satisfies the integral equation 

For the Neumann problem antisymmetric about y = 0, (3.2), (3.3) and (3.5) 

qi = 0 on y = O,)z1 > a,  (3.10) 
a$/ay = 0 on y = d ,  (3.11) 

become 

and (3.12) 

and the integral equations that result are of the same form as (3.7) and (3.9) but with 
0, replaced by G,. 

It is well-known that these integral equations suffer from the phenomenon of 
irregular values. Thus it can be shown that if k is an eigenvalue of the interior 
Dirichlet problem, i.e. if there exists a non-trivial solution to (V+ k2) qi = 0 in D- 
(the region surrounded by 8D and the section ( -a ,  a )  of the z-axis), with qi = O on aD 
and either 4 = 0 or aqi/ay = 0 on y = 0, 1x1 < a depending on the symmetry about 
y = 0, then the integral equations (3.7) and (3.9) are singular. Since the Green’s 
functions satisfy G(P, &) = G(&,P) ,  the kernel of (3.9) is the transpose of the kernel 
appearing in (3.7) and so the values of k for which the integral equations are singular 
are the same. These values of k are called irregular values. It should be pointed out 
that irregular values are nothing to do with the actual problem being solved but 
rather are a consequence of the method being used to solve the problem, and have 
no physical significance. If we consider the interior Dirichlet problem defined above 
and use simple arguments based on the fact that any body can be contained within 
a rectangle of width not more than that of the channel, then using standard theorems 
we can show that any irregular value must be greater than n/2d for the symmetric 
case and n/d for the antisymmetric case. (See, for example, Courant & Hilbert 1953, 
chapter V I  $2.) Now for the classical exterior problem whereD extends to infinity in 
all directions, it can be shown that the only values of k at which the integral equations 
are singular are those that correspond to the eigenvalues of the interior Dirichlet 
problem. A proof is given by Ursell (1973) but this relies on the uniqueness of the 
exterior problem which is known not to apply, at least when aD is a semicircle, if D 
is bounded in the y-direction (Callan et al. 1991). It is just these other values of k 
below the cutoff value n / 2 d ,  if they exist, which correspond to trapped modes. 

The far-field behaviour of qi is easily obtained once one of the integral equations 
has been solved. Thus in the symmetric case we have 

and 

(3.13) 

(3.14) 

as z+ f co, where ai(q) and Pf(q) can be determined from (2.16). The integral 
representation (3.6) together with the radiation condition (3.5) then imply that 

(3.15) 
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whereas (3.8) gives 

The antisymmetric 
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-4; = JaDa(a) %3a) ds,. 

case can be treated similarly. 

(3.16) 

4. The trapped-mode problem 
Callan et al. (1991) have proved that if aD is a semicircle then there is a discrete 

frequency k < n/2d  at which the antisymmetric problem with U = 0 on aD has a 
solution. Note that kd < in implies that j, = 0 and so $ + O  as 1x1 -+ 00. Also, they 
show that this discrete trapped mode is a solution to the physical problem and does 
not just arise as a result of the method of solution. Evans & Linton (1991) have also 
computed trapped-mode wavenumbers using matched eigenfunction expansions for 
the case when 3D is {x = a, 0 < y < b ;  -a < x < a ,  y = b ;  x = -a, 0 < y < b ;  (0 < 
b < d ) } ,  representing a rectangular block or strip. In this section we will consider the 
case of more general forms for aD. 

When U = 0 the integral equations (3.7) and (3.9) are almost identical, with the 
kernel of one the transpose of the kernel of the other. It thus makes no difference 
which is used as the starting point for the computation of trapped-mode 
wavenumbers. Thus we seek solutions kd < in of (3.7) with U = 0:  

The arguments given in $3  imply that this integral equation has no irregular values 
for kd < in. In  order to show that the solutions to (4.1) correspond to trapped modes 
we must construct the trapped-mode solution and show that it has the desired 
properties. Thus from the antisymmetric equivalent of (3.6) we see that once (4.1) 
has been solved the value of I$ everywhere in D can then be calculated from the 
integral representation 

and due to the exponential decay of G, as 1x1 + 00 this is clearly a trapped mode. 

then write 
Let aD be given by p(8) ,  0 < 8 < n. If we parametrize p by $ and q by 8 we can 

where w(8) = [p2(8)+p’2(8)]i.  The unit normal from D to aD is nq = (-y’(8), 
d ( 8 ) ) / W ( B )  and SO 

Now G, = :&(kr)+oa,  where r = [(z(e)-~($))~+(y(8)-y($))~]; and (?, is regular 
as kr + 0. In order to evaluate aG,(8, 8)/an, we note that 

as kr -+ 0. 
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a ld  
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

M = 4  

1.56905 
1.550 23 
1.504 84 
1.446 53 
1.391 28 
1.348 25 
1.32281 
1.32054 
1.344 79 
1.45511 

M = 8  

1.56905 
1.55023 
1.50484 
1.44654 
1.391 31 
1.348 30 
1.322 87 
1.32078 
1.35160 
1.42640 

Callan et al. 
1.56904 
1.55023 
1.50484 
1.44655 
1.391 31 
1.348 30 
1.322 88 
1.32079 
1.351 85 
1.427 30 

TABLE 1. Va-des of kd at whic.. trapped modes occur when p(B) = a 

Expanding x($) and y($) about the point $ = 8 then shows that 

[ P ’ ( 8 ) ~ ” ( 8 ) - p ~ ( 8 ) - 2 p ’ ~ ( 8 ) ]  as kr+O. (4.4) 4nw3(e) 
1 - -- 

For computational purposes we discretize (4.3) by dividing the interval (0, A )  into 
M segments. Thus we write 

where 8, = ( j - ! j )n /M.  Collocating at $ = 8, and writing $, = q5(8,) etc. gives 

{,w,, i = 1 ,..., M ,  
A M  +${=-x$ Ka 

M,-1 

(4.7) 
where G, = { aGa(8<, 8j)/anq, i + j  

aOa(e,, O,)/an,+ [~:p;-p~-2p;21/4~w~, i = j. 
For a trapped mode, therefore, we require the determinant of the M x M matrix 
whose elements are 

to be zero. By increasing M we can approximate more and more accurately the 
trapped-mode wavenumbers. The vanishing of the determinant of this matrix 
corresponds to the occurrence of a zero eigenvalue. The value of @ on the body for 
this trapped mode can then be obtained, up to a multiplicative constant, as the 
eigenvector which corresponds to this zero eigenvalue. 

As an example we will first consider the case where 6D is a semicircle of radius a,  
for which it is known that a solution exists and for which accurate values for the 
trapped-mode wavenumbers can be computed using the multipole method of Callan 
et al. (1991). In  this case we can exploit the symmetry about x = 0 and so we use a 
Green’s function given by (2.23) (with j, = 0) and restrict our attention to the region 
2 > 0. Table 1 shows a comparison of results obtained from this method using two 
different truncation parameters with accurate values obtained using the method 
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kd 

a ld  
FIGURE 2. Trapped-mode wavenumbers, kd, plotted against a/d  for three ellipses: 

_ _ _ _ _  , b/a = 0.5; -, b/a = 1 ;  -.-, b / a  = 1.5. 

a ld  M = 4  M = 8  M = 16 Evans & Linton 

0.1 1.567 23 1.567 38 1 .567 46 1.56751 
0.2 1.53321 1.53459 1.535 39 1.533 47 

1.467 10 1.46911 1.47056 0.3 1.463 43 
0.4 1.38475 1.391 17 1.394 46 1.39679 

1.32489 1.32954 1.332 71 0.5 1.31501 

TABLE 2. Values of kd at which trapped modes occur for a square block 

of Callan et al. (1991). Here M is the number of segments into which the quadrant 
p(B), 0 < B < in, is divided. The results from the integral equation formulation are 
extremely good with M = 8 giving accuracy to four places of decimals for all values 
of a/d  < 0.8. 

Comparison can also be made with results for a rectangular body obtained using 
the method of matched eigenfunction expansions described in Evans & Linton 
(1991). Owing to the presence of a sharp corner we expect the convergence of the 
above method with increasing truncation parameter M to be slower than for the 
semicircular case. Again the symmetry about x = 0 can be exploited and results 
for a rectangle given by {x = a, 0 < y < a ;  y = a, 0 < x < a}, or equivalently 
{p(B) = a/cos8, 0 < B < an; p(8 )  = a/sinB, in < 0 < in}, (0 < a/d < 0.5), are shown 
in table 2. As expected the results are not as accurate as those computed for the 
semicircle but nevertheless a truncation parameter of 16 appears to give results 
accurate to within 1 YO. 

These comparisons give us confidence in the values predicted by this theory that 
cannot be checked against known results. It should be noted however that the 
method of discretizing our integral equation, i.e. in equal intervals of 8, is not sensible 
for long slender bodies. In such cases discretizing in x or arclength would be a better 
approach. 

An example of the results that are obtained from our method is given in figure 2. 
The figure shows the trapped-mode wavenumbers for three ellipses xz /a2  + y2/b2 = 1, 
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FIQURE 3. Shaded contour plots of the potential # for the two trapped modes that exist for an 
ellipse with a/d = 1.5, b/d = 0.75. (a)  Symmetric about x = 0, W = 0.96; ( b )  antisymmetric about 
x = 0, M = 1.398. 

n = 2  1.391 31 

3 1.38302 
5 1.375 72 

10 1.36899 
100 1.361 20 
block 1.361 20 

TABLE 3. Values of kd at which trapped modes occur for an asymmetric body, x" + y" = an, 
with n = 2 in x < 0 and various values of n in x 2 0 

0 < a /d  < 0.5 where b/a = 0.5, 1 and 1.5. The solid curve therefore represents the 
semicircular case discussed above. All the results were computed using a truncation 
parameter of 8 after the symmetry about x = 0 had been taken into account. For 
these bodies there appears to be just one trapped mode which is symmetric about 
z = 0. The most striking feature is the fact that the trapped-mode wavenumbers are 
not monotonic as the size of the body increases. Thus when a/d  = 0.4 the circular 
body has a lower trapped-mode wavenumber than either the ellipse with b/a = 0.5, 
which is contained within it, or than that with b/a = 1.5 in which it is contained. 
Other examples of this phenomenon are provided by Evans & Linton (1991, figure 
4) and Callan et al. (1991, figure 2). 
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In  all the cases considered above, the body has been symmetric about x = 0. An 
example of a body without this symmetry property is given by i3D = {x2 + y2 = a2, 
x < 0; xn+yn = an, x 2 0}, where n > 2 is an integer. For n = 2 the body is just the 
semicircle discussed above. As n-t 00 the portion of CID in 5 > 0 becomes more and 
more like the square block. Table 3 shows the trapped-mode wavenumbers for such 
a body with a/d = 0.5 and M = 16 for various values of n. Also shown is the result 
when the portion of i3D in x > 0 is rectangular. 

The numerical results of Evans & Linton (1991) showed that for long blocks in 
channels more than one trapped mode could exist. The results given in their paper 
indicate that when a/d > 1 for a rectangular block a further mode, antisymmetric 
about x = 0 exists, and that as a/d increases, more and more modes are possible, 
symmetric and antisymmetric modes appearing in turn. We can use the methods 
described above to confirm that this phenomenon occurs for more general shapes. 
For example, in the case of an ellipse for which a/d = 1.5, b/a = 0.5, there are two 
trapped modes; a mode symmetric about x = 0 is found at  kd FZ 0.960 and a mode 
antisymmetric about x = 0 at kd x 1.398. Using (4.2) we can compute the value of 
4 in the fluid region. Thus figure 3(a, b) shows shaded contour plots of 4 for these 
modes, normalized so that the maximum value of 4 on the body is 1. The 
computations were carried out using M = 16 after exploiting the symmetry of the 
problem. The general form of the solutions is clear, with 4 = 0 on y = 0 and 4 -+ 0 as 
x-+ 00. However, owing to the discretization of the body boundary the values of 4 
near the ellipse are probably not very accurate. 

5. The scattering problem 
The solution $(x, y) describing the scattering of an incident plane wave eikz is given 

by (3.1)-(3.5) with U(x, y) = -aeikz/an. The special case when i3D is a semicircle has 
been solved, using the multipole method, in Linton & Evans (1992). For a given 
value of k there will be j, + 1 reflected and transmitted modes, where j, is defined by 
(2.13). The reflection and transmission coefficients for the various modes are defined 
in terms of A$ by R,  = A , ,  (5.1) 

Tn = &,+A;, 
n = 0,1, . . . , j,. The conservation of energy for this problem can be shown (Srokosz 
1980) to be equivalent to the condition 

3. t, 
E C -(lR,12+1Tn12) = 1. (5.3) 

n-0% 

For this problem the two different integral equation approaches, leading to (3.7) 
and (3.9), result in different systems of equations. First we shall consider the case 
when we start from (3.6). We can simplify the resulting integral equation by applying 
Green’s theorem in D- to eikz and G, and substituting for G,(P, q) U(q) in (3.6). This 
leads to the alternative integral representation 

n 

where CD = 4 + eikx is the total potential for the scattering problem. Thus on aD we 

which can be parameterized as for the trapped-mode problem. 
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Discretizing the resulting integrals and collocating leads to 

X M  
1@ -- C @3K&w3 = eikx{, i = 1 ,..., M ,  

M,-1 

(5.7) 

Next we consider the source distribution approach. Thus from (3.9) with 

i *j 
ad, (e,, e,)/an, + lp; p; - p: - ~P;~] /~XW:,  z = 3 .  

. .  where K:3 = 

p = (x, y) and using $ and 0 as before we have 

a 
an, 

0)  w(0)  d0 = -eikz 

which upon discretizing leads to 

X M  iky; . 
3i 3 -  $ , - - C p j K S  w - --elkx{, i = I ,  ..., M. 

w, M,-1 
(5.9) 

The value of the potential on the body can then be computed from (3.8), which after 
discretization, treating the term G,(0,, 03) separately, becomes 

, M  

(5.10) 

Here y = 0.577215 ... is Euler's constant. 
In the water-wave problem, where we are considering a vertical cylinder of 

constant cross-section, a quantity of interest is the exciting force in the x-direction, 
given by integrating the potential, @, times the x-component of the normal over the 
surface of the cylinder. Thus if the total velocity potential is 

Re {@(x, y) cosh k(z + h) e-iwt} 

the exciting force on the cylinder is Re{Xe-i"t} where 

sinh kh IaD @(a) (nu- i) ds,, 
2ipw X = - -  

k 
(5.12) 

where i is a unit vector in the x-direction. Discretizing the integral we have 

2ipon: M 

X%- sinh kh C G3 7;. 
1-1 iiM (5.13) 

From (5.4) and (3.14) we see that if (5.6) has been solved the reflection and 
transmission coefficients are obtained, using (5.1) and (5.2), from 

(5.14) 
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whereas if ,u is the solution of the integral equation we have, from (3.16), 

where 

and 

(5.15) 

(5.16) 

(5.17) 

Before considering other geometries we will consider the case of a circular cross- 
section, p(8 )  = a ,  with a/d = 0.5, and compare our results with those computed using 
the multipole method described in Linton & Evans (1992). We shall restrict our 
attention to values of kd in the range 0 < kd < 3n. For this geometry the integral 
equations (5.6) and (5.9) have irregular values corresponding to the zeros of 
J,(ka), n 2 0. The only two such zeros that exist in the range 0 < kd < 3x are a t  
k d / R  w 1.53096 and kdln w 2.43934. Thus we may expect some difficulty in 
computing accurate results near to these wavenumbers. It can be shown, from (2.15), 
that if kd = j , ~ ( l  +ti) or kd = (js+ l ) n ( l - + )  then G, = O ( d )  as e + O  and so we 
might also expect problems computing accurate results near to the cutoff values nx, 
n = 1,2. 

The reflection and transmission coefficients are obtained from (5.14) or (5.15). 
Both methods produce results in good agreement with results from Linton & 
Evans (1992), with IRJ2 and IT,12 agreeing to three decimal places over the range 
0 < kd < R when a truncation parameter of M = 8 is used, although the accuracy 
decreases as kd increases. A test of the accuracy of the results which can be used when 
results from other methods are not available is to monitor the value of E ,  defined in 
(5.3), which should be unity. In  this case IE-11 < over the whole range 
0 < kd < 3x, again forM = 8. This modestly sized circle turns out to be a particularly 
good case and the method becomes less accurate for larger and more elongated 
bodies. 

For a vertical circular cylinder the ratio of the exciting force on the body in a 
channel, given by (5.13), to that on the body if it were in the open sea, F (derived by 
MacCamy & Fuchs 1954), is given by 

(5.18) 

and the force magnification factor computed from (5.18) after first solving (5.6) again 
agrees very well with results from Linton & Evans (1992). The source distribution 
approach however is not as good when it comes to determining the value of q5 on the 
body since this involves using (5.10) which is a very slowly convergent series. It 
appears therefore that the Green's theorem approach is more satisfactory from a 
numerical point of view and we shall restrict our attention to this approach. 

As was mentioned above, by monitoring the value of E we can determine whether 
or not a set of results for a general-shaped body is likely t o  be accurate. Consider the 
ellipse shown in figure 3 for which a/d  = 1.5 and b/a = 0.5. The value of E together 
with the energies associated with the various reflected and transmitted modes, 
(tnlRn12/en, tnlTn12/e,, n = 0, ...,j,), is shown in figure 4, computed withM = 16 over 
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FIGURE 4. Energies associated with the reflected and transmitted modes for an ellipse with 
a ld  = 1.5, b/d = 0.75: -, poJ2; * . -, Iq12, ----, t, IR,I2/2; -.-, t,  JT,I2/2. Also shown is the total 
computed energy E. 
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FIGURE 5. POI2 plotted against kdln for five different ellipses all with bld = 0.5: 
- , a / d = O . l ;  . . - , a /d=0 .2 ; - - . - - , a /d=0 .5 ; - - - , a /d=  l ; - - - - , a / d = 2 .  

the range 0 < kd < 2n. At any particular value of kd/n  therefore, the sum of the 
values of the reflection and transmission curves is equal to the value of E. Without 
the curve of E it would be difficult to assess the accuracy of the results since spiky 
behaviour is not atypical and knowledge of any irregular values is not always 
straightforward. However, as drawn, the figure gives a clear indication of which 
spikes are real and which are due to numerical difficulties. Thus it is clear that the 
results near to kd = 1.64 and 1.94 are inaccurate but that the spike in the curve of 
&I2 that occurs near the first cutoff for motions symmetric about the channel 
centreline, kd = R, is  real. By using larger values of M the accuracy near to these 
troublesome points can be increased. For example with M = 16 the value of E at 
kd = 1.64 is 1.1513 to four decimal places whereas with M = 32 this becomes 1 .OO69. 

Figure 5 shows the energy associated with the fundamental reflected mode over 
the range 0 < kd < R for five different ellipses, all with b/d = 0.5. For all the values 
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0 0.5 1 .o 1.5 2.0 

kd /x  
FIQURE 6. Ratio of the exciting force on two ellipses, -, a / d  = 0.5, b / d  = 0.75; 

----, a/d = 1.5, b /d  = 0.75, to that on a circular cylinder for which a/d = 0.75. 

computed the value of E differed from unity by less than The case a/d  = 0.5 
corresponds to the circular cross-section discussed above. It can be seen that in very 
long waves (small kd) the reflection coefficient is greater for large ellipses whilst as 
kd increases this trend is reversed in general although for slender ellipses the results 
are oscillatory with a number of zeros occurring. 

Figure 6 shows the exciting force on two ellipses, with a/d  = 0.5 and a/d  = 1.5, 
over the range 0 < kd < 27c. In both cases the value of b /d  is 0.75 and the curves are 
non-dimensionalized by the exciting force on a circular cylinder for which a/d  = 0.75 
(computed using the multipole method). The force on the cylinder is thus unity in 
this figure. I t  can be seen that in long waves the exciting force on the longer ellipse 
is greater than that on the circle, which in turn is greater than the exciting force on 
the shorter ellipse. When kdlx is greater than about 0.5 the reverse is true for most 
values of kd, though near to the cutoff value kd = 7c the exciting force predicted on 
either ellipse is far greater than that on the circle. The small spike that occurs in the 
curve for the ellipse with a / d  = 1.5 around kd = 1.64 is due to the presence of an 
irregular value, see figure 4 above. 

6. Conclusion 
We have shown how integral equations can be used to solve a particular class of 

problems concerning obstacles in waveguides, namely the Neumann problem for 
bodies symmetric about the centreline of a channel, and two such problems were 
considered in detail. 

First it  was shown how trapped-mode wavenumbers can be computed. Comparison 
with previous results obtained by different methods gives confidence in the accuracy 
of our method for more general shapes, with the best results being obtained for 
circular or near-circular geometries. Computations suggest that a t  least one trapped 
mode exists for any shape of body (symmetric about the channel centreline). 

Secondly the problem of the scattering of a plane incident wave was considered 
and comparison with previous results obtained for the circular cylinder case showed 
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that the reflection and transmission coefficients together with the exciting force on 
the body can be obtained extremely accurately and efficiently by the present 
method. By monitoring the energy E of the solution, which should be identically 
equal to one, values of kd for which the solution is likely to be inaccurate can be easily 
isolated. 

The extension of the present method to the problem of the scattering of a plane 
wave by an arbitrarily shaped body situated anywhere in a channel is straightforward 
since the Green’s function G, is the Green’s function for a channel of width d with no 
symmetry conditions on its midline. 

We would like to acknowledge the useful comments of a referee concerning the 
solution procedure used in $5. C.M.L. is supported by SERC under grant 
GR/F/83969. 
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